A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA. | LitMetric

Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334530PMC
http://dx.doi.org/10.1111/mmi.13985DOI Listing

Publication Analysis

Top Keywords

tasa fibres
20
tasa
13
subtilis tasa
12
biofilm matrix
12
fibres
10
bacillus subtilis
8
recombinant tasa
8
formed tasa
8
recombinant
5
subtilis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!