Two yellow luminescence bands in undoped GaN.

Sci Rep

Nitride Crystals, Inc., 9702 Gayton Rd., Richmond, VA, 23238, USA.

Published: May 2018

Two yellow luminescence bands related to different defects have been revealed in undoped GaN grown by hydride vapor phase epitaxy (HVPE). One of them, labeled YL1, has the zero-phonon line (ZPL) at 2.57 eV and the band maximum at 2.20 eV at low temperature. This luminescence band is the ubiquitous yellow band observed in GaN grown by metalorganic chemical vapor deposition, either undoped (but containing carbon with high concentration) or doped with Si. Another yellow band, labeled YL3, has the ZPL at 2.36 eV and the band maximum at 2.09 eV. Previously, the ZPL and fine structure of this band were erroneously attributed to the red luminescence band. Both the YL1 and YL3 bands show phonon-related fine structure at the high-energy side, which is caused by strong electron-phonon coupling involving the LO and pseudo-local phonon modes. The shapes of the bands are described with a one-dimensional configuration coordinate model, and the Huang-Rhys factors are found. Possible origins of the defect-related luminescence bands are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970192PMC
http://dx.doi.org/10.1038/s41598-018-26354-zDOI Listing

Publication Analysis

Top Keywords

luminescence bands
12
yellow luminescence
8
undoped gan
8
gan grown
8
band maximum
8
luminescence band
8
yellow band
8
fine structure
8
band
7
bands
5

Similar Publications

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

In this work, the chloride system M(AlCl) (M = Ca, Sr, Ba) doped with Yb is investigated in greater detail. The influence of the [AlCl] ion on the position of the emission band of Yb is investigated and the emission spectra are recorded. The emission spectra of the Yb-doped materials are characterized by broad 4f5d (HS) ↔ 4f transitions with maxima in the range between 416 nm (Ca) and 421 nm (Ba) (24,061-23,738 cm), whereas the Ba compound features an additional 4f5d (LS) ↔ 4f emission band at 397 nm (25,203 cm) at lower temperatures.

View Article and Find Full Text PDF

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!