Aryl-alcohol oxidase (AAO) has demonstrated to be an enzyme with a bright future ahead due to its biotechnological potential in deracemisation of chiral compounds, production of bioplastic precursors and other reactions of interest. Expanding our understanding on the AAO reaction mechanisms, through the investigation of its structure-function relationships, is crucial for its exploitation as an industrial biocatalyst. In this regard, previous computational studies suggested an active role for AAO Phe397 at the active-site entrance. This residue is located in a loop that partially covers the access to the cofactor forming a bottleneck together with two other aromatic residues. Kinetic and affinity spectroscopic studies, complemented with computational simulations using the recently developed adaptive-PELE technology, reveal that the Phe397 residue is important for product release and to help the substrates attain a catalytically relevant position within the active-site cavity. Moreover, removal of aromaticity at the 397 position impairs the oxygen-reduction activity of the enzyme. Experimental and computational findings agree very well in the timing of product release from AAO, and the simulations help to understand the experimental results. This highlights the potential of adaptive-PELE to provide answers to the questions raised by the empirical results in the study of enzyme mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970180 | PMC |
http://dx.doi.org/10.1038/s41598-018-26445-x | DOI Listing |
Appl Microbiol Biotechnol
October 2024
Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
The search for novel synthetic tools to prepare industrial chemicals in a safer and greener manner is a continuing challenge in synthetic chemistry. In this manuscript, we report the discovery, characterization, and synthetic potential of two novel aryl-alcohol oxidases from bacteria which are able to oxidize a variety of aliphatic and aromatic alcohols with efficiencies up to 4970 min mM. Both enzymes have shown a reasonable thermostability (thermal melting temperature values of 50.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2024
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from and for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from in complex with a product analogue. Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
March 2024
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
Background: Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities.
View Article and Find Full Text PDFSci Rep
March 2024
Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O to HO. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!