Targeting exosome biogenesis and release may have potential clinical implications for cancer therapy. Herein, we have optimized a quantitative high throughput screen (qHTS) assay to identify compounds that modulate exosome biogenesis and/or release by aggressive prostate cancer (PCa) CD63-GFP-expressing C4-2B cells. A total of 4,580 compounds were screened from the LOPAC library (a collection of 1,280 pharmacologically active compounds) and the NPC library (NCGC collection of 3,300 compounds approved for clinical use). Twenty-two compounds were found to be either potent activators or inhibitors of intracellular GFP signal in the CD63-GFP-expressing C4-2B cells. The activity of lead compounds in modulating the secretion of exosomes was validated by a tunable resistive pulse sensing (TRPS) system (qNano-IZON) and flow cytometry. The mechanism of action of the lead compounds in modulating exosome biogenesis and/or secretion were delineated by immunoblot analysis of protein markers of the endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways. The lead compounds tipifarnib, neticonazole, climbazole, ketoconazole, and triademenol were validated as potent inhibitors and sitafloxacin, forskolin, SB218795, fenoterol, nitrefazole and pentetrazol as activators of exosome biogenesis and/or secretion in PC cells. Our findings implicate the potential utility of drug-repurposing as novel adjunct therapeutic strategies in advanced cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970137 | PMC |
http://dx.doi.org/10.1038/s41598-018-26411-7 | DOI Listing |
Background: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India. Electronic address:
Background: The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns.
Objective: This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine.
Biochem Biophys Res Commun
January 2025
Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan. Electronic address:
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO.
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!