Background: Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression and the antidepressant response. Electroconvulsive therapy (ECT) is reported to increase BDNF levels in blood, though only a small number of studies have been conducted to date.
Objective: Our objectives were to: 1) compare plasma BDNF levels in medicated patients with depression and controls; 2) assess the effect of ECT on plasma BDNF levels in medicated patients with depression; 3) explore the relationship between plasma BDNF levels and the Val66Met (rs6265) BDNF polymorphism; and 4) examine the relationship between plasma BDNF levels and clinical symptoms and outcomes with ECT.
Methods: Plasma BDNF levels were analyzed in samples from 61 medicated patients with a major depressive episode and 50 healthy controls, and in patient samples following a course of ECT. Fifty-two samples from the depressed patient group were genotyped for the Val66Met BDNF polymorphism.
Results: There was no difference in plasma BDNF levels between the control and depressed groups, and there was no difference in plasma BDNF levels in patients following treatment with ECT. In line with previous reports, we show that, in medicated patients with depression, Met-carriers had higher plasma BDNF levels than Val-carriers, though genotype was not related to clinical response. We found no association between plasma BDNF levels and depression severity or the clinical response to ECT.
Conclusions: Our results suggest that plasma BDNF does not represent a suitable candidate biomarker for determining the therapeutic response to ECT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2018.05.011 | DOI Listing |
Neuron
January 2025
Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA. Electronic address:
In this issue of Neuron, Ruggiero et al. demonstrate that hippocampal networks maintain a stable mean firing rate despite unstable individual units. This homeostatic control operates through NMDAR-eEF2K-BDNF signaling in parvalbumin interneurons.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.
From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.
View Article and Find Full Text PDFFront Neurosci
January 2025
Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China.
Background: In recent years, depression has become a global public health concern, and one of the common concomitant symptoms are diminished sexual motivation and impaired sexual performance. The aim of this study was to investigate the potential effects of oligosaccharides (MOO) on depression and its concomitant symptom, sexual dysfunction.
Methods: Chronic unpredictable mild stress (CUMS)-induced depression model was constructed, and the effects of MOO on depression and sexual abilities were evaluated.
Cogn Affect Behav Neurosci
January 2025
School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, P. R. China.
Background: Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!