Heart rate monitoring and therapeutic devices include real-time sensing capabilities reflecting the state of the heart. Current circuitry can be interpreted as a cardiac electrical signal compression algorithm representing the time signal information into a single event description of the cardiac activity. It is observed that some detection techniques developed for ECG signal detection like artificial neural network, genetic algorithm, Hilbert transform, hidden Markov model are some sophisticated algorithms which provide suitable results but their implementation on a silicon chip is very complicated. Due to less complexity and high performance, wavelet transform based approaches are widely used. In this paper, after a thorough analysis of various wavelet transforms, it is found that Biorthogonal wavelet transform is best suited to detect ECG signal's QRS complex. The main steps involved in ECG detection process consist of de-noising and locating different ECG peaks using adaptive slope prediction thresholding. Furthermore, the significant challenges involved in the wireless transmission of ECG data are data conversion and power consumption. As medical regulatory boards demand a lossless compression technique, lossless compression technique with a high bit compression ratio is highly required. Furthermore, in this work, LZMA based ECG data compression technique is proposed. The proposed methodology achieves the highest signal to noise ratio, and lowest root mean square error. Also, the proposed ECG detection technique is capable of distinguishing accurately between healthy, myocardial infarction, congestive heart failure and coronary artery disease patients with a detection accuracy, sensitivity, specificity, and error of 99.92%, 99.94%, 99.92% and 0.0013, respectively. The use of LZMA data compression of ECG data achieves a high compression ratio of 18.84. The advantages and effectiveness of the proposed algorithm are verified by comparing with the existing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2018.05.003 | DOI Listing |
Anal Biochem
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of pharmacy, Zagazig University, Zagazig 44519, Egypt.
This work represents different spectrophotometric techniques for concurrent quantification of Indacaterol (IND) and Mometasone furoate (MOM); co-formulated inhalation capsules to control asthma symptoms. Direct spectrophotometric (D) approach was applied for IND assay. While, absorption factor (AF), ratio difference (RD), mean centering of the ratio spectra (MC), and continuous wavelet transform (CW) techniques were utilized for MOM quantification.
View Article and Find Full Text PDFBiomed Tech (Berl)
December 2024
66284 School of Design & Art, Shenyang Aerospace University, Shenyang, China.
Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.
Aeromagnetic surveying technology detects minute variations in Earth's magnetic field and is essential for geological studies, environmental monitoring, and resource exploration. Compared to conventional methods, residence time difference (RTD) fluxgate sensors deployed on unmanned aerial vehicles (UAVs) offer increased flexibility in complex terrains. However, measurement accuracy and reliability are adversely affected by environmental and sensor noise, including Barkhausen noise.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
A method of bridge structure seismic response identification combining signal processing technology and deep learning technology is proposed. The short-time energy method is used to intelligently extract the non-smooth segments in the sensor acquired signals, and the short-time Fourier transform, continuous wavelet transform, and Meier frequency cestrum coefficients are used to analyze the spectrum of the non-smooth segments of the response of the bridge structure, and the response feature matrix is extracted and used to classify sequences or images in the LSTM network and the Resnet50 network. The results show that the signal processing techniques can effectively extract the structural response features and reduce the overfitting phenomenon of neural networks, and the combination of signal processing techniques and deep learning techniques can recognize the seismic response of bridge structures with high accuracy and efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!