Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbiota composition and its metabolic capacity are very important for host health. Evidence suggests that gut microbiome is involved in the metabolites production by host-microbiome interaction. These metabolites can be absorbed in blood and excreted in exhaled air. Although, profiles of gut microbiota and exhaled metabolites were associated with gastrointestinal diseases, a direct link between them has not yet been investigated. The aim of the study was to investigate the relation between volatiles in breath and gut microbiome in active and quiescent Crohn's disease (CD) via a multivariate statistical approach. Canonical correlation analysis (CCA) was used to assess the relation between exhaled metabolites and faecal bacterial species. From 68 CD patients, 184 repeated faecal and breath samples were collected (92 active and 92 quiescent disease). The microbiota composition was assessed by the pyrosequencing of the 16 S rRNA V1-V3 gene region and breath metabolites by gas chromatography mass spectrometry. In active disease, CCA analysis identified 18 metabolites significantly correlated with 19 faecal bacterial taxa (R = 0.91 p-value 3.5*10-4). In quiescent disease 17 volatile metabolites were correlated with 17 bacterial taxa (R = 0.96 p-value 2.8*10-4). Nine metabolites and three bacteria taxa overlapped in active and inactive CD. This is the first study that shows a significant relation between gut microbiome and exhaled metabolites, and was found to differ between active and quiescent CD, indicating various underlying mechanisms. Unravelling this link is essential to increase our understanding on the functional effects of the microbiome and may provide new leads for microbiome-targeted intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2018.03.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!