Space-time wave packets are a class of pulsed optical beams that are diffraction-free and dispersion-free in free space by virtue of introducing a tight correlation between the spatial and temporal degrees of freedom of the field. Such wave packets have been recently synthesized in a novel configuration that makes use of a spatial light modulator to realize the required spatio-temporal correlations. This arrangement combines pulse-modulation and beam-shaping to assign one spatial frequency to each wavelength according to a prescribed correlation function. Relying on a spatial light modulator results in several limitations by virtue of their pixelation, small area, and low energy-handling capability. Here we demonstrate the synthesis of space-time wave packets with one spatial dimension kept uniform - that is, light sheets - using transparent transmissive phase plates produced by a gray-scale lithography process. We confirm the diffraction-free behavior of wave packets having a bandwidth of 0.25 nm (filtered from a typical femtosecond Ti:sapphire laser) and 30 nm (a multi-terawatt femtosecond laser). This work paves the way for developing versatile high-energy light bullets for applications in nonlinear optics and laser machining.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.013628DOI Listing

Publication Analysis

Top Keywords

wave packets
20
space-time wave
12
transmissive phase
8
phase plates
8
spatial light
8
light modulator
8
wave
5
packets
5
spatial
5
synthesizing broadband
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!