A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical Robustness of a Contemporary Cementless Stem to Surgical Variation in Stem Size and Position. | LitMetric

Biomechanical Robustness of a Contemporary Cementless Stem to Surgical Variation in Stem Size and Position.

J Biomech Eng

Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia e-mail: .

Published: September 2018

Successful designs of total hip replacement (THR) need to be robust to surgical variation in sizing and positioning of the femoral stem. This study presents an automated method for comprehensive evaluation of the potential impact of surgical variability in sizing and positioning on the primary stability of a contemporary cementless femoral stem (Corail®, DePuy Synthes). A patient-specific finite element (FE) model of a femur was generated from computed tomography (CT) images from a female donor. An automated algorithm was developed to span the plausible surgical envelope of implant positions constrained by the inner cortical boundary. The analysis was performed on four stem sizes: oversized, ideal (nominal) sized, and undersized by up to two stem sizes. For each size, Latin hypercube sampling was used to generate models for 100 unique alignment scenarios. For each scenario, peak hip contact and muscle forces published for stair climbing were scaled to the donor's body weight and applied to the model. The risk of implant loosening was assessed by comparing the bone-implant micromotion/strains to thresholds (150 μm and 7000 με) above which fibrous tissue is expected to prevail and the periprosthetic bone to yield, respectively. The risk of long-term loosening due to adverse bone resorption was assessed using bone adaptation theory. The range of implant positions generated effectively spanned the available intracortical space. The Corail stem was found stable and robust to changes in size and position, with the majority of the bone-implant interface undergoing micromotion and interfacial strains that are well below 150 μm and 7000 με, respectively. Nevertheless, the range of implant positions generated caused an increase of up to 50% in peak micromotion and up to 25% in interfacial strains, particularly for retroverted stems placed in a medial position.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4039824DOI Listing

Publication Analysis

Top Keywords

implant positions
12
contemporary cementless
8
surgical variation
8
size position
8
sizing positioning
8
femoral stem
8
stem sizes
8
150 μm 7000
8
7000 με
8
range implant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!