Image formation in the scanning helium microscope.

Ultramicroscopy

Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.

Published: September 2018

The scanning helium microscope (SHeM) is a new addition to the array of available microscopies, particularly for delicate materials that may suffer damage under techniques utilising light or charged particles. As with all other microscopies, the specifics of image formation within the instrument are required to gain a full understanding of the produced micrographs. We present work detailing the basics of the subject for the SHeM, including the specific nature of the projection distortions that arise due to the scattering geometry. Extension of these concepts allowed for an iterative ray tracing Monte Carlo model replicating diffuse scattering from a sample surface to be constructed. Comparisons between experimental data and simulations yielded a minimum resolvable step height of (67 ± 5) µm and a minimum resolvable planar angle of (4.3 ± 0.3)° for the instrument in question.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2018.05.004DOI Listing

Publication Analysis

Top Keywords

image formation
8
scanning helium
8
helium microscope
8
minimum resolvable
8
formation scanning
4
microscope scanning
4
microscope shem
4
shem addition
4
addition array
4
array microscopies
4

Similar Publications

Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.

View Article and Find Full Text PDF

Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma.

Sci Adv

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!