Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.

Appl Radiat Isot

Nuclear Science and Engineering Institute, University of Missouri Columbia, MO 65211, United States; Electrical Engineering and Computer Science, University of Missouri-Columbia, MO 65211, United States. Electronic address:

Published: September 2018

This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with Pu and Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of Pu and 2.2% at 5.48 MeV of Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2018.05.012DOI Listing

Publication Analysis

Top Keywords

cvd diamond
8
diamond sensor
8
high-pressure gas
8
sensor determined
8
sensor
5
tiptauni thin-film
4
thin-film cvd
4
diamond
4
sensor ability
4
ability charged
4

Similar Publications

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

As an environment-friendly material, graphene oxide nanosheet can effectively improve the polishing surface quality of single crystal diamond workpieces. However, the lubricating and chemical effects of graphene oxide nanosheets have an uncertain impact on the polishing material removal rate. In this paper, the graphene oxide-enhanced hybrid slurry was prepared with good stability.

View Article and Find Full Text PDF

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.

View Article and Find Full Text PDF

An attenuation of visible probe radiation identified in earlier absorption studies of microwave plasma-activated CH/H/Ar gas mixtures is shown to arise from nanoparticles in under-pumped regions on opposing sides of a reactor used for diamond chemical vapor deposition. The present modeling studies highlight (i) ejection of Si-containing species into the gas phase by reactive radical etching of the quartz window through which the microwave radiation enters the reactor, enabled by suitably high window temperatures () and the synergistic action of near-window H atoms and CH radicals; (ii) subsequent processing of the ejected material, some of which are transported to and accumulate in stagnation regions in the entrance to the reactor side arms; and (iii) the importance of Si in facilitating homogeneous gas phase nucleation, clustering, and nanoparticle growth in these regions. The observed attenuation, its probe wavelength dependence, and its variations with changes in process conditions can all be rationalized by a combination of absorption and scattering contributions from Si/C/H containing nanoparticles with diameters in the range of 50-100 nm.

View Article and Find Full Text PDF

In this project, we conducted micro-beam sensitivity mapping using the Diamond Light Source (DLS) synchrotron. We fabricated three samples with distinct metal contacts: Platinum (HPS-Pt) and Aluminium/Platinum (HPS-Al/Pt) on high-quality single crystal CVD diamond, and Platinum (VS-Pt) on lower purity single crystal CVD diamond. Our objective was to identify the most suitable sample for synchrotron measurements, particularly focusing on the lower purity sample due to its unique characteristics, such as thin nitrogen lines and substrate area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!