Differences in lower limb biomechanics between ballet dancers and non-dancers during functional landing tasks.

Phys Ther Sport

School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia. Electronic address:

Published: July 2018

Objectives: To determine the differences in the lower limb landing biomechanics of adolescent ballet dancers compared to non-dancers when performing a hop and a stop jump task.

Design: Cross-sectional.

Setting: Laboratory.

Participants: Thirteen adolescent female ballet dancers (11.8 ± 1.1 years) and 17 non-dancers (10.9 ± 0.8 years) performed hop and stop jump tasks.

Main Outcome Measures: Vertical ground reaction force, and three-dimensional ankle, knee and hip joint angles and moments during the landing phase.

Results: Dancers displayed greater sagittal plane joint excursions during the hop and stop jump at the ankle (mean difference = 22.0°, P < 0.001, 14.8°, P < 0.001 respectively), knee (mean difference = 18.1°, P = 0.001, 9.8°, P = 0.002 respectively) and hip (stop jump task; mean difference = 8.3°, P = 0.008). Dancers displayed a larger hip extensor moment compared to non-dancers (P < 0.001) during the stop jump task only. Dancers also took longer to reach peak vGRF and jumped three times higher than non-dancers (P < 0.001) during the stop jump task. No difference in peak vGRF between groups was displayed for either task.

Conclusions: Adolescent dancers demonstrate a transfer of landing technique to non-ballet specific tasks, reflective of the greater jump height and sagittal plane joint excursions. This landing strategy may be associated with the low rate of non-contact ACL injuries in female dancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ptsp.2018.05.005DOI Listing

Publication Analysis

Top Keywords

ballet dancers
12
hop jump
12
differences lower
8
lower limb
8
limb biomechanics
4
biomechanics ballet
4
dancers
4
dancers non-dancers
4
non-dancers functional
4
functional landing
4

Similar Publications

While moderate exercise supports regular menstrual cycle (MC) function, many female athletes experience MC symptoms that negatively influence their training and performance. Hereby, knowledge and communication about this topic are important to promote an athlete's health and wellbeing. Hence, this study aimed to assess the knowledge and communication surrounding the MC among Norwegian rhythmic gymnasts, ballerinas, and dancers.

View Article and Find Full Text PDF

Recreational older ballet dancers adapt faster to repeated standing-slips than older non-dancers.

Complement Ther Clin Pract

January 2025

Department of Kinesiology and Health, Georgia State University, Atlanta, GA, 30303, USA. Electronic address:

Background: Falls are a global health concern facing older adults. Ballet emphasizes postural control, coordination, and leg muscle strength. Previous work indicated young professional ballet dancers adapt more effectively to repeated standing-slips than non-dancers as evidenced by better reactive improvements in dynamic gait stability and step latency.

View Article and Find Full Text PDF

Context: Tendon abnormalities on imaging are commonly observed in individuals with Achilles tendinopathy. Those abnormalities can also be present in asymptomatic individuals, which is an important risk factor for developing tendon symptoms. Ballet dancers are particularly vulnerable due to the high loads placed on their Achilles tendons.

View Article and Find Full Text PDF

Bringing biomechanics to ballet: a feasibility study using wearable technology during grand allegro.

Sports Biomech

January 2025

Artistic Health Department, The Australian Ballet, Southbank, Victoria, Australia.

Quantifying impact accelerations during ballet class may assist load management. The largest impact accelerations occur during the sequence of large (single or double-leg) jumps (grand allegro) but are potentially the most challenging class component for utilising wearable technology, and feasibility is unknown. This pilot study utilised wearable technology during class to (1) explore feasibility and acceptability, (2) quantify impact accelerations during the entire sequence of jumps during grand allegro and (3) compare impact accelerations between limbs (preferred and non-preferred landing limb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!