AI Article Synopsis

Article Abstract

Oral therapy with 8-methoxypsoralen (8-MOP) may cause major side effects, whereas the topical treatment might not be much effective due to the low penetration induced by typical formulations. Therefore, the objectives of this work are the development and characterization of a nanoemulsion (NE) containing 8-MOP together with an ex vivo permeation study, monitored by a validated HPLC-Fluo method, to determine the amount of drug retained in viable skin (epidermis (E) and dermis (D)) and in stratum corneum (SC). The optimized conditions for NE formulation were achieved by full factorial designs (2 and 3): 60 s and 60% of ultrasound time and potency, respectively; 10 mL of final volume; 2% v/v of oil phase (clove essential oil); and 10% m/v of Poloxamer 407. The NE showed mean droplet diameter of 24.98 ± 0.49 nm, polydispersity index (PDI) of 0.091 ± 0.23, pH values of 6.54 ± 0.06, refractive index of 1.3525 ± 0.0001 and apparent viscosity of 51.15 ± 3.66 mPa at 20 °C. Droplets with nanospherical diameters were also observed by transmission electron microscopy (TEM). Ex vivo permeation study showed that 8.5% of the applied 8-MOP dose permeated through the biological membranes, with flux (J) of 1.35 μg cm h. The drug retention in E + D and in SC was 10.15 ± 1.36 and 1.95 ± 0.71 µg cm, respectively. Retention in viable skin induced by the NE was almost two-fold higher than a compounded cream (5.04 ± 0.30 μg cm). These results suggested that the developed NE is a promising alternative for 8-MOP topical therapy when compared to commercial formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.05.053DOI Listing

Publication Analysis

Top Keywords

vivo permeation
12
topical treatment
8
development characterization
8
permeation study
8
viable skin
8
nanoemulsion 8-methoxypsoralen
4
8-methoxypsoralen topical
4
treatment dermatoses
4
dermatoses development
4
characterization vivo
4

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.

View Article and Find Full Text PDF

The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.

View Article and Find Full Text PDF

Hyaluronic acid/silk fibroin nanoparticles loaded with methotrexate for topical treatment of psoriasis.

Int J Pharm X

June 2025

State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.

Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!