AI Article Synopsis

Article Abstract

Intermittent PTH-like drugs are the only approved so-called anabolic agent that increases bone mass in both mice and humans. It is well documented that PTH targets mature cells of the osteoblast lineage, with only indirect evidence of its actions on early cells of the osteoblast lineage. Using a triple transgenic mouse model that allowed labeling of very early cells of the osteoblast lineage, we traced the progeny of these into osteoblast lineage in adult mice. These early cells expressed PTH1R and multiplied when PTH (1-34) was administered daily. We also showed that the early mesenchymal cells showed accelerated differentiation into mature osteocalcin-positive osteoblasts and osteocytes. Rather surprisingly, when teriparatide administration was stopped, these early mesenchymal precursors differentiated into adipocytes. We showed that the adipogenic differentiation is accompanied by a decrease in wnt signaling in osteoblast precursors. In this review, we discuss the possible clinical relevance of this finding and the possible molecular mechanisms that contribute to this phenotype in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250592PMC
http://dx.doi.org/10.1016/j.bone.2018.05.024DOI Listing

Publication Analysis

Top Keywords

osteoblast lineage
16
cells osteoblast
12
early cells
12
adipogenic differentiation
8
mesenchymal precursors
8
early mesenchymal
8
cells
5
osteoblast
5
early
5
withdrawal parathyroid
4

Similar Publications

Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a miRNA that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models.

View Article and Find Full Text PDF

Background/objectives: Mesenchymal stem cells (MSCs) possess the remarkable ability to differentiate into various cell types, including osteoblasts. Understanding the molecular mechanisms governing MSC osteogenic differentiation is crucial for advancing clinical applications and our comprehension of complex disease processes. However, the key biological molecules regulating this process remain incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Bone defect repair is a significant challenge in orthopedics, with copper being essential for bone regeneration, but its exact role and mechanisms in this process require further investigation.
  • The study introduces copper-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs), emphasizing their ability to enhance osteoblast mitophagy and mitochondrial dynamics, leading to improved calcium phosphate release and biomineralization for faster bone healing.
  • By using conditional knockout mice, researchers confirmed that Cu-MBGNs promote bone formation through the autophagy pathway, strengthen mitophagy, and enhance mitochondrial function, pointing to their potential in developing advanced bioactive materials for orthopedic treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!