Hierarchical biogeographical processes largely explain the genomic divergence pattern in a species complex of sea anemones (Metridioidea: Sagartiidae: Anthothoe).

Mol Phylogenet Evol

Genomics in Ecology, Evolution, and Conservation Laboratory, Departmento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile; Nucleo Milenio de Salmonidos Invasores (INVASAL), Concepción, Chile.

Published: October 2018

The phylogenetic resolution provided by genome-wide data has demonstrated the usefulness of RAD sequencing to tackle long-standing taxonomic questions. Cnidarians have recently become a model group in this regard, yet species delimitation analyses have been mostly performed in octocorals. In this study, we used RAD sequencing to test the species hypotheses in a wide-spread complex of sea anemones (genus Anthothoe), contrasting this new line of evidence with their current classification. The alternative hypotheses were tested using a Bayes Factors delimitation method, and the most probable species tree was then evaluated under different biogeographic scenarios. Our results decisively rejected the current morphology-informed delimitation model and infer the presence of several cryptic species associated with distinct marine ecoregions. This spatial pattern was remarkably consistent throughout the study, highlighting the role of geographic distribution as a powerful explanatory variable of lineages diversification. The southern Gondwana pattern with episodic, jump dispersal events is the biogeographic historical representation that best fits the Anthothoe species tree. The high population differentiation possibly amplified by the occurrence of asexual reproduction makes it difficult to identify genes responsible for local adaptation, however, these seem to be mainly associated with cellular and metabolic processes. We propose a new set of species hypotheses for the Southern Hemispheric Anthothoe clade, based on the pronounced genomic divergence observed among lineages. Although the link between the genetic and phenotypic differentiation remains elusive, newer sequencing technologies are bringing us closer to understanding the evolution of sea anemone diversity and, therefore, how to appropriately classify them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2018.05.022DOI Listing

Publication Analysis

Top Keywords

genomic divergence
8
complex sea
8
sea anemones
8
rad sequencing
8
species hypotheses
8
species tree
8
species
7
hierarchical biogeographical
4
biogeographical processes
4
processes explain
4

Similar Publications

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

Skmer approach improves species discrimination in taxonomically problematic genus (Theaceae).

Plant Divers

November 2024

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.

Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.

View Article and Find Full Text PDF

Environmental Variation Influences Genome Evolution in Hispaniolan Trunk Anoles (Anolis distichus).

Mol Ecol

January 2025

Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA.

Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables.

View Article and Find Full Text PDF

Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!