White tail disease (WTD), a major disease prevailing in the larval stage of Macrobrachium rosenbergii, caused by Macrobrachium rosenbergii nodavirus (MrNV) associated with extra small virus (XSV), led to the economic loss of shrimp industry in China. In order to establish a convenient, sensitive and selective molecular diagnostic method to detect MrNV and XSV for the Chinese shrimp (MrNV/XSV-chin), a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay combined with a lateral flow dipstick (LFD) method were developed. A set of four specific primers and a labeled probe were designed according to the six conserved gene sequence regions encoding for the MrNV capsid protein CP43 and the XSV capsid protein CP17. The detection of MrNV and XSV simultaneously by RT-LAMP was performed at 61 °C in a single reaction for 60 min followed by hybridization with an FITC-labeled probe for 5 min and visualized by LFD. The RT-LAMP-LFD assay had a sensitivity of approximately 100-fold higher than conventional PCR. In addition, the assay could detect MrNV/XSV-chin from limited amount of RNA extracts as low as 1.0 pg extracted from Macrobrachium rosenbergii. This assay was simple to use, required little instrumentation, and exhibited excellent specificity for the MrNV/XSV-chin compared with other shrimp viruses. In conclusion, a convenient, sensitive and selective practical molecular diagnostic method was developed with the potential for diagnosis and prevention of WTD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2018.05.001DOI Listing

Publication Analysis

Top Keywords

macrobrachium rosenbergii
16
reverse transcription
8
transcription loop-mediated
8
loop-mediated isothermal
8
isothermal amplification
8
assay combined
8
combined lateral
8
lateral flow
8
flow dipstick
8
rosenbergii nodavirus
8

Similar Publications

The selection and expression of conspicuous colorations in animals is often related to anti-predation strategies and sociosexual communication. The giant river prawn, Macrobrachium rosenbergii (de Man, 1879) is a species with three male morphotypes that vary in claws' coloration and the size of the animals. It has been suggested that male reproductive quality might be associated to their coloration, but evidence is still conflicting.

View Article and Find Full Text PDF

SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.

View Article and Find Full Text PDF

The CRISPR/Cas genome editing approach in non-model organisms poses challenges that remain to be resolved. Here, we demonstrated a generalized roadmap for a de novo genome annotation approach applied to the non-model organism . We also addressed the typical genome editing challenges arising from genetic variations, such as a high frequency of single nucleotide polymorphisms, differences in sex chromosomes, and repetitive sequences that can lead to off-target events.

View Article and Find Full Text PDF

Integrated Metabolomic and Transcriptomic Analysis Reveal the Production Mechanism of Semicarbazide in Under Urea Conditions.

Foods

November 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.

Semicarbazide (SEM) is commonly utilized as a biomarker for detecting the usage of nitrofurazone (NFZ); however, its endogenous presence in aquatic products complicates detection and poses challenges to the quality and safety of these products. Although previous research suggests a potential link between SEM and urea, the specific mechanisms underlying its production under induced conditions remain unclear. To solve the above problem, the integrated metabolomic and transcriptomic analyses were performed for systematically exploring endogenous production mechanisms underlying SEM in under urea conditions.

View Article and Find Full Text PDF

A newly characterized CFSH gene in sex chromosomes is associated with growth instead of sexual development in the prawn Macrobrachium rosenbergii.

Gen Comp Endocrinol

December 2024

National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Crustacean female sex hormone (CFSH) was first identified as a female eyestalk-specific factor involved in the female sexual development in blue crab. Whether CFSH has conserved role in other decapod species remains to be clarified. In this study, we identified a CFSH gene (MrCFSH) in the Z and W chromosomes from the prawn Macrobrachium rosenbergii genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!