Macrophages participate in immunity, tissue repair and tissue homeostasis. Activation of Toll-like receptors (TLRs) by conserved exogenous or endogenous structures initiates signaling cascades that result in the release of cytokines such as tumor necrosis factor α (TNFα). Extracellular substrate stiffness is known to regulate functions of non-immune cells through a process called mechanotransduction, yet less is known about how physical cues affect macrophage function or TLR signaling. To investigate this question, we cultured murine primary bone marrow-derived macrophages (BMMs) and RAW264.7 cells on fibronectin-coated polyacrylamide (PA) gels of defined stiffnesses (1, 20 and 150 kPa) that approximate the physical properties of physiologic tissues. BMMs on all gels were smaller and more circular than those on rigid glass. Macrophages on intermediate stiffness 20 kPa PA gels were slightly larger and less circular than those on either 1 or 150 kPa. Secretion of the pro-inflammatory cytokine, TNFα, in response to stimulation of TLR4 and TLR9 was increased in macrophages grown on soft gels versus more rigid gels, particularly for BMMs. Inhibition of the rho-associated coiled-coil kinase 1/2 (ROCK1/2), key mediators in cell contractility and mechanotransduction, enhanced release of TNFα in response to stimulation of TLR4. ROCK1/2 inhibition enhanced phosphorylation of the TLR downstream signaling molecules, p38, ERK1/2 and NFκB. Our data indicate that physical cues from the extracellular environment regulate macrophage morphology and TLR signaling. These findings have important implications in the regulation of macrophage function in diseased tissues and offer a novel pharmacological target for the manipulation of macrophage function in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967458 | PMC |
http://dx.doi.org/10.1093/intimm/dxy027 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFCell Death Differ
January 2025
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.
Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China.
Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!