Safrole is a well-known carcinogenic agent that is present in camphor trees. In this study, a gas chromatographic method was established to quantitate the levels of safrole in essential oils using n-decyl alcohol as an internal standard. The method used a nonpolar column and was able to detect concentrations of safrole as low as 5 µg/ml in the samples. Following addition of 2-10 mg of safrole into 1 g of essential oil extracted from Stout Camphor wood ( Hayata) or 1-10 mg of safrole into 1 g of essential oil extracted from Small-flower Camphor wood ( Hayat), the recovery rates of safrole were determined. With direct injection of samples into the gas chromatograph, the results showed that the recovery was more than 96.1%, with a coefficient of variation below 5.6%. We then analyzed 23 commercially available Stout Camphor and other essential oil samples and found that 21 of them contained safrole in the range of 37.65-355.07 mg/g. In addition, in the heavier essential oil distilled from Small-flower Camphor wood, the safrole level was up to 642.98 mg/g. Our results demonstrated that most camphor essential oils on the market have a carcinogenic potential due to their high safrole levels.
Download full-text PDF |
Source |
---|
J Oleo Sci
January 2025
Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz, University.
The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India. Electronic address:
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China. Electronic address:
This work aims to optimize encapsulation of Zanthoxylum schinifolium essential oil (ZSEO) in microcapsule to enhance its stability and slow-release capability. Herein, the ZSEO microcapsules stabilized by bacterial cellulose nanofibrils/whey protein isolate (BCNFs/WPI) complexes and modified by cinnamaldehyde (CA) were successfully prepared via spray drying. The microcapsules formed by 1.
View Article and Find Full Text PDFToxicol Rep
June 2025
School of Pharmacy, College of Health Sciences, University of Nizwa, Oman.
Lemongrass (Poaceae) is one of the aromatic plants with strong odors. Traditionally, lemon grass oil has been used for the treatment of many diseases such as gastrointestinal cramps, high blood pressure, high body temperatures, and fatigue, and is also considered an antibacterial and anti-diarrheal agent. Therefore, this study aims to investigate volatile active constituents and a few important biological activities of the volatile oil of lemongrass (Cymbopogon citratus) grown in Oman.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Biology, Science Faculty, Atatürk University, Erzurum, Türkiye.
Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.
Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!