The human leucocyte antigen (HLA) is the most polymorphic region of the human genome. Compared with Sanger-sequencing-based typing (SBT) methods, next-generation sequencing (NGS) has significantly higher throughput and depth sequencing characteristics, having dramatic impacts on HLA typing in clinical settings. Here, we performed NGS technology with Ion Torrent S5 platform to evaluate the potential four novel HLA alleles detected in five donors from Chinese Marrow Donor Program (CMDP, Shaanxi Province) during routine Sanger SBT testing. We also predicted the highest estimated relative frequency novel allele-bearing haplotypes according to their phenotypes and HaploStats database. NGS assays, as it provided the phase-defined and complete sequencing information, undoubtedly increase novel allele identification which will greatly enrich HLA database and provide more information for donor selection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/iji.12377DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
novel hla
8
hla alleles
8
donors chinese
8
chinese marrow
8
marrow donor
8
donor program
8
hla
5
utility next-generation
4
sequencing
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.

View Article and Find Full Text PDF

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

Post-Kasai portoenterostomy (KPE) cholangitis is one of the most common complications that has a negative impact on liver function and native liver survival. Early diagnosis and judicious empiric antimicrobial management are, therefore, important to prevent further liver damage and decompensation. However, there is no consensus regarding the standard definition of post-KPE cholangitis, and established guidelines on evaluation and management are also lacking.

View Article and Find Full Text PDF

Integrative genomics would strengthen AMR understanding through ONE health approach.

Heliyon

July 2024

Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India.

Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!