We investigate the 1/3 monolayer α-Pb/Si(111) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature sqrt[3]×sqrt[3] and low-temperature 3×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.196402 | DOI Listing |
J Phys Chem Lett
January 2025
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
The most distinctive features of ferroelectrics are spontaneous polarization and depolarization. Ferroelectricity was first observed in Rochelle salt, a compound with a chiral component in which the molecular chirality is not affected by depolarization. For structurally chiral ferroelectrics (SCFs), such as triglycine sulfate, which lacks chiral components, the depolarization effect on chirality presents an intriguing and unexplored topic.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Hybrid Organic-Inorganic Semiconductors for Energy, Golden, Colorado, 80401, USA.
Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
Nat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!