We show that when the QCD axion is directly coupled to quarks with c_{i}/f∂_{μ}aq[over ¯]_{i}γ^{μ}γ^{5}q_{i}, such as in Dine-Fischler-Srednicki-Zhitnitsky models, the dominant production mechanism in the early Universe at temperatures 1 GeV≲T≲100 GeV is obtained via q_{i}q[over ¯]_{i}↔ga and q_{i}g↔q_{i}a, where g are gluons. The production of axions through such processes is maximal around T≈m_{i}, where m_{i} are the different heavy quark masses. This leads to a relic axion background that decouples at such temperatures, leaving a contribution to the effective number of relativistic degrees of freedom, which can be larger than the case of decoupling happens the electroweak phase transition, ΔN_{eff}≲0.027. Our prediction for the t quark is 0.027≤ΔN_{eff}≤0.036 for 10^{6} GeV≲f/c_{t}≲4×10^{8} GeV and for the b quark is 0.027≤ΔN_{eff}≤0.047 for 10^{7} GeV≲f/c_{b}≲3×10^{8} GeV. For the c quark the window can only be roughly estimated as 0.027<ΔN_{eff}≲O(0.1), for f/c_{c}≲(2-3)×10^{8} GeV, since axions can still be partially produced in a regime of strong coupling, when α_{s}≳1. These contributions are comparable to the sensitivity of future CMB S4 experiments, thus opening an alternative window to detect the axion and to test the early Universe at such temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.191301 | DOI Listing |
Phys Rev Lett
December 2024
Departament de Física Aplicada, Universitat d'Alacant, 03690 Alicante, Spain.
The existence of light QCD axions, whose mass depends on an additional free parameter, can lead to a new ground state of matter, where the sourced axion field reduces the nucleon effective mass. The presence of the axion field has structural consequences, in particular, it results in a thinner (or even prevents its existence) heat-blanketing envelope, significantly altering the cooling patterns of neutron stars. We exploit the anomalous cooling behavior to constrain previously uncharted regions of the axion parameter space by comparing model predictions with existing data from isolated neutron stars.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2024
ETH Zürich, Institute for Particle Physics and Astrophysics, 8093 Zurich, Switzerland.
Phys Rev Lett
August 2024
CAPA & Departamento de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza, Spain.
A consequence of QCD axion dark matter being born after inflation is the emergence of small-scale substructures known as miniclusters. Although miniclusters merge to form minihalos, this intrinsic granularity is expected to remain imprinted on small scales in our galaxy, leading to potentially damaging consequences for the campaign to detect axions directly on Earth. This picture, however, is modified when one takes into account the fact that encounters with stars will tidally strip mass from the miniclusters, creating pc-long tidal streams that act to refill the dark matter distribution.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
Theoretical Physics Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA.
Detection of axion dark matter heavier than an meV is hindered by its small wavelength, which limits the useful volume of traditional experiments. This problem can be avoided by directly detecting in-medium excitations, whose ∼meV-eV energies are decoupled from the detector size. We show that for any target inside a magnetic field, the absorption rate of electromagnetically coupled axions into in-medium excitations is determined by the dielectric function.
View Article and Find Full Text PDFPhys Rev Lett
March 2024
C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA.
We derive model-independent quantization conditions on the axion couplings (sometimes known as the anomaly coefficients) to the standard model gauge group [SU(3)×SU(2)×U(1)_{Y}]/Z_{q} with q=1, 2, 3, 6. Using these quantization conditions, we prove that any QCD axion model to the right of the E/N=8/3 line on the |g_{aγγ}|-m_{a} plot must necessarily face the axion domain wall problem in a postinflationary scenario. We further demonstrate the higher-group and noninvertible global symmetries in the standard model coupled to a single axion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!