The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cs00029hDOI Listing

Publication Analysis

Top Keywords

metal chalcogenide
24
multinary metal
12
solar light
8
chalcogenide nanocrystals
8
solar cells
8
cells photocatalytic/photoelectrochemical
8
photocatalytic/photoelectrochemical systems
8
chalcogenide ncs
8
chalcogenide nc-based
8
nc-based solar
8

Similar Publications

The performance of heterogeneous catalysis, specifically photochemical and electrochemical hydrogen evolution reaction fundamentally relies upon the prudent choice of catalytic systems with ideal optoelectronic and surface properties. Progressive research in materials processing has hinted at the large-scale applicability of 2D materials for achieving higher activity in the HER process. Among 2D materials, transition metal chalcogenides have emerged as the advanced materials to enhance the rate of HER on account of their layered structure and chalcogen-sites that exhibit favourable hydrogen binding energies.

View Article and Find Full Text PDF

Two-Dimensional Tantalum Carbo-Selenide for Hydrogen Evolution.

ACS Nano

January 2025

Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.

Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.

View Article and Find Full Text PDF

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!