A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Long-term changes of land use/cover in the Three Gorges Reservoir Area of the Yangtze River, China.]. | LitMetric

[Long-term changes of land use/cover in the Three Gorges Reservoir Area of the Yangtze River, China.].

Ying Yong Sheng Tai Xue Bao

College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.

Published: May 2018

Understanding the temporal and spatial dynamics of land use/cover (LUC) can contri-bute to reveal the impacts of climate change and human activities on ecosystems and thus be an important prerequisite for ecosystem management. As an ecologically vulnerable area in China, the Three Gorges Reservoir Area (TGRA) of the Yangtze River presented significant complexity in the response to environmental changes. However, there is a general lack of understanding in the underlying mechanism. In this study, we interpreted the time series remote sensing images derived from the Landsat sensors to map the LUC of the TGRA, and aimed to analyze the long-term changes in the distribution and structure of LUC and elucidate the evolution process of LUC, which could provide a scientific basis to understand the complexity of ecosystem changes and regional ecosystem management in ecologically fragile regions. The results showed that the TGRA presented the significant changes in spatial heterogeneity of LUC structure from 1990 to 2015. Meanwhile, the landscape changed from farmland to woodland (forest and shrubland). Farmland decreased from 66.2% to 40.4%, but woodland increased from 31.3% to 53.5%, buildings and water area increased gradually. Forest gradually spread to the middle of the TGRA, while the buildings presented a scattered expansion. In the altitude zone of 500-1000 m and slope zone of 15°-25°, woodland increased noticeably, and the coniferous forest, mixed forest and shrubland had a higher growth rate. In the study period, due to the urban construction and the various ecological restoration projects in the TGRA, the LUC structure varied with the dam's impoundment and was characterized by the ecosystem restoration. Ecological restoration projects were helpful to reduce the negative impacts of urban construction and economic development on the environment.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201805.012DOI Listing

Publication Analysis

Top Keywords

land use/cover
8
three gorges
8
gorges reservoir
8
reservoir area
8
yangtze river
8
ecosystem management
8
management ecologically
8
luc structure
8
forest shrubland
8
woodland increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!