Based on a continuous field observation in the Larix principis-rupprechtii plantation plots, located at the upper (P), middle-upper (P), middle (P), middle-lower (P), and lower (P) positions, in a southeast-facing slope of the Xiangshuihe watershed of Liupan Mountains, China, the stem sap flow was observed with the thermal diffusivity probe method. The soil water potential and meteorological factors were monitored from May to October, 2014. We found significant differences among slope positions in the daily forest transpiration (T, mm·d), with an order of P (0.975)>P (0.876)>P (0.726)>P (0.653)>P (0.628). T was significantly positively correlated with the daily maximum temperature (T), daily mean solar radiation (SR), daily mean saturated vapor pressure deficit (VPD), potential evapotranspiration (PET), and daily mean soil water potential (Ψ), but negatively correlated with the daily mean air relative humidity (RH), daily precipitation (P), and daily minimum temperature (T). According to the upper boundary line ana-lysis, significant differences were found in the degree of T responding to each single environmental factor among slope positions. The degree of its responses gradually decreased for average daily air temperature (T), RH, VPD, PET and Ψ, whereas increased for the SR and daily average volumetric soil water content (VSM) from the upper position to the lower. Results from regression and partial correlation analysis showed that variation of T was mainly controlled by VPD, PET and RH in different slope positions. T was also strongly affected by Ψ and T in the upper-slope positions and by SR, T and VSM at the lower-slope positions. Generally, the T difference among slope positions was a consequence of joint contributions of soil water and meteorological factors. It is necessary to consider the changes of soil water and meteorological factors in different positions along the slope when examining slope-scale or watershed-scale forest transpiration with sap flow estimated from xylem sap flux density measurements of a particular plot.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201805.006DOI Listing

Publication Analysis

Top Keywords

soil water
20
slope positions
16
meteorological factors
12
daily
10
larix principis-rupprechtii
8
principis-rupprechtii plantation
8
liupan mountains
8
positions
8
sap flow
8
water potential
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment.

Sci Rep

January 2025

Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.

Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.

View Article and Find Full Text PDF

Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!