Viral inactivation plays a critical role in assuring the safety of monoclonal antibody (mAb) therapeutics. Traditional viral inactivation involves large holding tanks in which product is maintained at a target low pH for a defined hold time, typically 30-60 min. The drive toward continuous processing and improved facility utilization has provided motivation for development of a continuous viral inactivation process. To this end, a lab-scale prototype viral inactivation system was designed, built, and characterized. Multiple incubation chamber designs are evaluated to identify the optimal design that enables narrow residence time distributions in continuous flow systems. Extensive analysis is conducted supporting rapid low pH viral inactivation and included evaluations with multiple viruses, a range of pH levels, buffer compositions, mAb concentrations, and temperatures. Multiple test conditions are evaluated using the in-line system and results compared to traditional batch-mode viral inactivation. Comparability in kinetics of virus inactivation suggests equivalency between the two approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201700718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!