Biocatalytic potential of Streptomyces strains isolated from the rhizosphere of plants and from mycorrhizosphere of fungi has been investigated. A total of 118 Streptomyces isolates were selected and functionally screened for 10 different biotechnologically important enzymatic activities: hydrolase (cellulase, cutinase, gelatinase, lipase, protease, polyhydroxyalkanoate (PHA) depolymerase), phenol oxidase and peroxidase (laccase, tyrosinase, and lignin peroxidase), and aminotransferase. Out of 118 tested Streptomyces spp., 90% showed at least one enzymatic activity. The most abundant were enzymes involved in the biomass degradation, as the production of cutinase, cellulase, and lignin peroxidase were detected in 31%, 40%, and 48% of the isolates, respectively. The improved specific activities of lipase (isolates BV315 and BV100) and tyrosinase (isolates BV87 and BV88) were shown in comparison with the industrially relevant activities of Pseudomonas strains. Plant rhizosphere soils were more prolific source of Streptomyces strains with biocatalytic potential in comparison with mycorrhizosphere soils. Overall, 284 enzyme activities among 118 Streptomyces isolates have been detected. This is the first comprehensive screening of Streptomyces isolates from rhizosphere and mycorrhizosphere soils for novel biocatalysts, showing that specific environmental habitats, such as rhizosphere soils, are "treasure troves" of Streptomyces with biocatalytic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.1664DOI Listing

Publication Analysis

Top Keywords

biocatalytic potential
16
streptomyces isolates
12
streptomyces
8
potential streptomyces
8
streptomyces spp
8
isolates rhizosphere
8
rhizosphere plants
8
plants mycorrhizosphere
8
mycorrhizosphere fungi
8
streptomyces strains
8

Similar Publications

Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI).

View Article and Find Full Text PDF

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

Salidroside is a phenylpropanoid glycoside with wide applications in the food, pharmaceutical, and cosmetic industries; however, the plant genus Rhodiola, the natural source of salidroside, has slow growth and limited distribution. In this study, we designed a novel six-enzyme biocatalytic cascade for the efficient production of salidroside, utilizing cost-effective bio-based L-Tyrosine as the starting material. A preliminary analysis revealed that the poor thermostability of the Bacillus licheniformis UDP-glycosyltransferase (EC 2.

View Article and Find Full Text PDF

Rational multienzyme architecture design with iMARS.

Cell

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center for Proteins & Bits, Lumy Biotechnology, Changzhou, Jiangsu 213200, China. Electronic address:

Biocatalytic cascades with spatial proximity can orchestrate multistep pathways to form metabolic highways, which enhance the overall catalytic efficiency. However, the effect of spatial organization on catalytic activity is poorly understood, and multienzyme architectural engineering with predictable performance remains unrealized. Here, we developed a standardized framework, called iMARS, to rapidly design the optimal multienzyme architecture by integrating high-throughput activity tests and structural analysis.

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!