Background And Purpose: Surgery is the first choice therapeutic approach in case of drug-resistant epilepsy. Unfortunately, up to 43% of patients referred for presurgical assessment do not have a lesion detectable by routine 3T magnetic resonance imaging (MRI) (MRI-negative), although most of them likely have an underlying epileptogenic lesion. Thus, new MRI modalities with increased sensibility for epileptogenic lesions are required. This paper describes the magnetization-prepared two rapid acquisition gradient echoes (MP2RAGE) and susceptibility-weighted imaging (SWI) findings at 7T in a series of patients with drug-resistant epilepsy of different etiologies.
Methods: Prospective pilot study of 7 patients with drug-resistant lesional epilepsy and absence of contraindications for MRI underwent a research 7T head-only scanner. Qualitative analysis of the high-resolution MP2RAGE and SWI sequences is given for each case. This study was approved by the local ethics committee. Written informed consent was obtained from each participant.
Results: This study shows that such sequences at ultra-high field are new and valuable approaches to unravel and characterize epileptogenic lesions. Particularly, MP2RAGE shows a better delineation of lesions due to high gray-white matter contrast and structural resolution, and SWI reveals new imaging signs related to improved magnitude and phase contrast imaging.
Conclusion: MRI at ultra-high field is very promising for the detection of inconspicuous epileptogenic lesions and may facilitate epilepsy surgery of a great number of to-date MRI-negative patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jon.12523 | DOI Listing |
Epilepsy Behav
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. Electronic address:
Purpose: Concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used to assist in the presurgical localization of seizure foci in people with epilepsy. Our study aimed to examine the clinical feasibility of an optimized concurrent EEG-fMRI protocol.
Methods: The optimized protocol employed a fast-fMRI sequence (sampling rate = 10 Hz) with a spare arrangement, which allowed a time window of 1.
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands.
Purpose: In resective epilepsy surgery for drug-resistant focal epilepsy (DRE), good seizure outcome is strongly associated with visualization of an epileptogenic lesion on MRI. Standard clinical MRI (≤ 3 Tesla (T)) may fail to detect subtle lesions. 7T MRI enhances detection and delineation, the potential benefits of increasing field strength to 9.
View Article and Find Full Text PDFRadiographics
January 2025
From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219 (A.S., A.T.T., B.W.M., L.L.W., J.L.S.); and Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH (A.T.T.).
Approximately one-third of patients with focal epilepsy have medically refractory focal epilepsy (MRFE), which significantly impacts their quality of life. Once a seizure focus is identified and determined to be in the noneloquent cortex, it can be surgically resected with the goal of freedom from seizures and minimal neurocognitive deficit. During noninvasive (phase I) presurgical planning, functional (nuclear) imaging and structural imaging are complementary in the accurate localization of the epileptogenic zone (EZ).
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland.
Objective: This study aimed to investigate two key aspects of scalp high-frequency oscillations (HFOs) in pediatric focal lesional epilepsy: (1) the stability of scalp HFO spatial distribution across consecutive nights, and (2) the variation in scalp HFO rates in response to changes in antiseizure medication (ASM).
Methods: We analyzed 81 whole-night scalp electroencephalography (EEG) recordings from 20 children with focal lesional epilepsy. We used a previously validated automated HFO detector to assess scalp HFO rates (80-250 Hz) during non-rapid eye movement (NREM) sleep.
Neurol Sci
December 2024
Neurology Unit, Department of Neurosciences, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
Background: Drug-resistant epilepsy (DRE) secondary to hypothalamic hamartoma (HH) often requires surgical resection or stereotactic radiosurgery, which frequently fail to provide satisfactory outcomes and are associated with severe side effects. Magnetic resonance-guided focused ultrasound (MRgFUS) may represent a minimally invasive surgical approach to HH by offering precise thermal ablation of sub-millimetric brain targets while sparing surrounding structures.
Methods: We present the case of a 19-year-old man with HH-associated DRE, who was successfully treated with MRgFUS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!