In our previous study, chromium malate is beneficial for type 2 diabetic rats in control glycometabolism and lipid metabolism. The present study was designed to observe the chronic toxicity, lipid metabolism, learning and memory ability, and related enzymes of chromium malate in rats during the year. The results showed that pathological, toxic, feces, and urine of chromium malate (at daily doses of 10.0, 15.0, and 20.0 μg Cr/kg bm) did not change measurably. Chromium malate (at daily doses of 15.0 and 20.0 μg Cr/kg bm) could significantly reduce the levels of total cholesterol (TC), LDL, and triglyceride (TG), and increase the level of HDL in male rats compared to control group and chromium picolinate group. Significant escalating trends of the escape latency and swimming speed (Morris water maze test), and the original platform quadrant stops, residence time, and swimming speed (Space exploration test) in male rats of chromium malate groups were obtained. The SOD, GSH-Px, and TChE activities of chromium malate (at daily doses of 15.0 and 20.0 μg Cr/kg bm) were enhanced significantly in male rats compared with those of the normal control group and chromium picolinate group. Glycometabolism and related enzymes had no significant changes compared to normal control group and chromium picolinate group. These results indicated that long-term chromium malate supplementation did not cause measurable toxicity at daily doses of 10.0, 15.0, and 20.0 μg Cr/kg bm and could improve dyslipidemia and learning and memory deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-018-1377-z | DOI Listing |
Mar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFPlant Physiol Biochem
September 2024
Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan. Electronic address:
Chromium (Cr) is a well-known environmental pollutant while less information is available on the role of Cr-resistant bacteria in the alleviation of Cr-stress in chili (Capsicum annum L.) plants. Effect of Cr-resistant bacterial strains on growth and Cr uptake by chili plants was investigated.
View Article and Find Full Text PDFEnviron Pollut
January 2024
Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China. Electronic address:
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB.
View Article and Find Full Text PDFFront Chem
May 2022
Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
A new analytical procedure for the speciation of chromium (Cr) in plants by high performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was developed using a strong anion-exchange Mono Q column for the separation of the Cr species. To optimize the analytical procedure, Cr complexes were first synthesized from Cr-nitrate with the addition of an excess of ligand (90°C). Cr-oxalate, Cr-malate, Cr-citrate, Cr-aconitate and Cr-quinate complexes and Cr-nitrate (pH 6.
View Article and Find Full Text PDFSaudi J Biol Sci
March 2022
Center for Organismal Studies, Department of Molecular Biology of Plants, Im Neuenheimer Feld 360, 69120, University of Heildelberg, Germany.
In the present study, 30 potential germplasm of oat ( L.) were subjected to proximate, elemental, and HPLC analysis to provide a scientific basis to genetic diversity present among them. The extracts of the selected germplasms were also evaluated for their antioxidant potentials through DPPH and ABTS assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!