Breast cancer metastasizes through the lymphovascular system to the regional lymph nodes in the axilla and to both visceral and non-visceral sites. Renewed interest in the route by which tumor cells gain access to blood and lymphatic capillaries are the subject of research at mechanical, anatomic, pathologic, genetic, epidemiologic and molecular levels. Two papers presented at the 7th International Symposium on Cancer Metastasis in San Francisco showed tumor cells entering the systemic circulation through the sentinel lymph node. This information challenges the current paradigm where clinicians believe that access is gained through intra- and peri-tumoral blood vessels and that metastasis to axillary lymph nodes is an interesting epi-phenomenon. The sentinel lymph node era has changed the modern surgical approach to the axilla and the basis of this change is summarized in this paper. A new approach to the management of axillary metastases after systemic therapy relies on determining whether there is a complete pathologic response; if no tumor is found in the previously biopsied node, a complete axillary lymph node dissection may be avoided. African American women seem to inherit a trait from West African ancestors and tend to develop more lethal types of breast cancer. These tumors may have a molecular machinery that enhances their ability to metastasize to visceral sites and future research may unearth the mechanisms for this phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10585-018-9902-1 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFMetaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.
View Article and Find Full Text PDFthe evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.
View Article and Find Full Text PDFthe axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!