One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles.

Faraday Discuss

Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff, CF10 3AT, UK.

Published: September 2018

A series of 1 wt% supported Au, Pd and AuPd nanoalloy catalysts were prepared via microwave assisted reduction of PdCl2 and HAuCl4 in a facile, one pot process. The resulting materials showed excellent activity for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, with a synergistic effect observed on the addition of Au into a Pd catalyst. Detailed electron microscopy showed that the bimetallic particles exhibited a core-shell morphology, with an Au core surrounded by an Au-Pd shell, with a size between 10-20 nm. The presence of Au in the shell was confirmed by EDX studies, with corroborating data from XPS measurements showing a significant contribution of both Au and Pd in the spectra, with the Au signal increasing as the total Au content of the catalyst increased. No PdO was observed, suggesting a complete reduction of the metal chloride nanoparticles. Unlike similar catalysts prepared by sol-immobilisation methodology, the core-shell structures showed excellent stability during the hydrogen peroxide synthesis reaction, and no catalyst deactivation was observed over 4 reuse cycles. This is the first time the preparation of stable core-shell particles have been reported using microwave assisted reduction. The observation that these particles are core-shell, without the need of a complicated synthesis or high thermal treatment and form in just 15 minutes presents an exciting opportunity for this experimental technique.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fd00004bDOI Listing

Publication Analysis

Top Keywords

catalysts prepared
8
microwave assisted
8
assisted reduction
8
hydrogen peroxide
8
core-shell
5
pot microwave
4
synthesis
4
microwave synthesis
4
synthesis highly
4
highly stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!