Effective malaria treatment requires rapid and accurate diagnosis of infecting species and actual parasitemia. Despite the recent success of rapid tests, the analysis of thick and thin blood smears remains the gold standard for routine malaria diagnosis in endemic areas. For non-endemic regions, sample preparation and analysis of blood smears are an issue due to low microscopy expertise and few cases of imported malaria. Automation of microscopy results could be beneficial to quickly confirm suspected infections in such conditions. Here, we present a label-free, high-throughput method for early malaria detection with the potential to reduce inter-observer variation by reducing sample preparation and analysis effort. We used differential digital holographic microscopy in combination with two-dimensional hydrodynamic focusing for the label-free detection of P. falciparum infection in sphered erythrocytes, with a parasitemia detection limit of 0.01%. Moreover, the achieved differentiation of P. falciparum ring-, trophozoite- and schizont life cycle stages in synchronized cultures demonstrates the potential for future discrimination of even malaria species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8lc00350e | DOI Listing |
SLAS Technol
January 2025
Merck & Co., Inc., Rahway, NJ, USA.
This mini-review provides an overview of recent developments in AEMS supporting hit identification in drug discovery, emphasizing its potential to enhance the quality and efficiency of label-free HTS. Future advancements that may further expand the role of AEMS in the drug discovery process will also be discussed.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
December 2024
Graduate School of Engineering, Osaka University, A1/A14, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Mass spectrometry (MS) is a valuable tool that enables label-free analysis and the ability to measure multiple molecules. The atmospheric pressure MS imaging (MSI) method usually requires tedious sample preparation. A simple ionization method with minimal sample preparation is needed for high-throughput analysis.
View Article and Find Full Text PDFComprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.
View Article and Find Full Text PDFHepatol Commun
November 2024
Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.
View Article and Find Full Text PDFNat Commun
January 2025
Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!