Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets.

PLoS One

Dept. of Computer Science, Univ. of Miami, Coral Gables, FL, United States of America.

Published: December 2018

The availability of large-scale screens of host-virus interaction interfaces enabled the topological analysis of viral protein targets of the host. In particular, host proteins that bind viral proteins are generally hubs and proteins with high betweenness centrality. Recently, other topological measures were introduced that a virus may tap to infect a host cell. Utilizing experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and Influenza, we pooled molecular interactions between proteins from different pathway databases. Apart from a protein's degree and betweenness centrality, we considered a protein's pathway participation, ability to topologically control a network and protein PageRank index. In particular, we found that proteins with increasing values of such measures tend to accumulate viral targets and distinguish viral targets from non-targets. Furthermore, all such topological measures strongly correlate with the occurrence of a given protein in different pathways. Building a random forest classifier that is based on such topological measures, we found that protein PageRank index had the highest impact on the classification of viral (non-)targets while proteins' ability to topologically control an interaction network played the least important role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967884PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197595PLOS

Publication Analysis

Top Keywords

topological measures
16
betweenness centrality
12
viral targets
12
degree betweenness
8
protein targets
8
ability topologically
8
topologically control
8
protein pagerank
8
viral
6
topological
5

Similar Publications

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

This study investigates fixed and moving mesh methodologies for modeling liquid metal-free surface deformation during the induction melting process. The numerical method employs robust coupling of magnetic fields with the hydrodynamics of the turbulent stirring of liquid metal. Free surface tracking is implemented using the fixed mesh level set (LS) and the moving mesh arbitrary Lagrangian-Eulerian (ALE) formulation.

View Article and Find Full Text PDF

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!