Transforming growth factor β (TGF-β) is critical for embryonic development, adult tissue homeostasis, and tumor progression. TGF-β suppresses tumors at early stage, but promotes metastasis at later stage through oncogenes such as Twist1. Gamma-synuclein (SNCG) is overexpressed in a variety of invasive and metastatic cancer. Here, we show that TGF-β induces SNCG expression by Smad-Twist1 axis, thus promoting TGF-β- and Twist1-induced cancer cell migration and invasion. We identify multiple Twist1-binding sites (E-boxes) in SNCG promoter. Chromatin immunoprecipitation and luciferase assays confirm the binding of Twist1 to the E-boxes of SNCG promoter sequence (-129/-1026 bp). Importantly, the Twist1-binding site close to the transcription initiation site is critical for the upregulation of SNCG expression by TGF-β and Twist1. Mutations of Twist1 motif on the SNCG promoter constructs markedly reduces the promoter activity. We further show that TGF-β induces Twist1 expression through Smad thereby enhancing the binding of Twist1 to SNCG promoter, upregulating SNCG promoter activity and increasing SNCG expression. SNCG knockdown abrogates TGF-β- or Twist1-induced cancer cell migration and invasion. Finally, SNCG knockdown inhibits the promotion of cancer metastasis by Twist1. Together, our data demonstrate that SNCG is a novel target of TGF-β-Smad-Twist1 axis and a mediator of Twist1-induced cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967338 | PMC |
http://dx.doi.org/10.1038/s41419-018-0657-z | DOI Listing |
Transl Vis Sci Technol
August 2024
Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
Front Vet Sci
February 2022
Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain.
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model.
View Article and Find Full Text PDFJ Neurosci
May 2020
Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94304
Optic neuropathies are a group of optic nerve (ON) diseases caused by various insults including glaucoma, inflammation, ischemia, trauma, and genetic deficits, which are characterized by retinal ganglion cell (RGC) death and ON degeneration. An increasing number of genes involved in RGC intrinsic signaling have been found to be promising neural repair targets that can potentially be modulated directly by gene therapy, if we can achieve RGC specific gene targeting. To address this challenge, we first used adeno-associated virus (AAV)-mediated gene transfer to perform a low-throughput screening in both male and female mouse eyes and identified the mouse γ-synuclein (mSncg) promoter, which specifically and potently sustained transgene expression in mouse RGCs and also works in human RGCs.
View Article and Find Full Text PDFOncol Rep
March 2020
Cancer Epigenetics Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia.
Restoration of normal DNA promoter methylation and expression states of cancer‑related genes may be an option for the prevention as well as the treatment of several types of cancer. Constitutional promoter methylation of BRCA1 DNA repair associated (BRCA1) gene is linked with a high risk of developing breast and ovarian cancer. Furthermore, hypomethylation of the proto‑oncogene γ synuclein (SNCG) is associated with the metastasis of breast and ovarian cancer and reduced disease‑free survival (DFS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!