Amino Acids as Building Blocks for Carbonic Anhydrase Inhibitors.

Metabolites

Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.

Published: May 2018

Carbonic anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life, classified into seven genetically different families (α⁻θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO₂), generating bicarbonate (HCO₃) and protons (H⁺). Fifteen isoforms of human CA (hCA I⁻XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or progression of several diseases. For this reason, for a long time CA inhibitors (CAIs) have been used in the control of glaucoma and as diuretics. Furthermore, the search for new potential CAIs for other pharmacological applications is a very active field. Amino acids constitute the smallest fundamental monomers of protein and, due to their useful bivalent chemical properties, are widely used in organic chemistry. Both proteinogenic and non-proteinogenic amino acids have been extensively used to synthesize CAIs. This article provides an overview of the different strategies that have been used to design new CAIs containing amino acids, and how these bivalent molecules influence the properties of the inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027070PMC
http://dx.doi.org/10.3390/metabo8020036DOI Listing

Publication Analysis

Top Keywords

amino acids
16
amino
4
acids building
4
building blocks
4
blocks carbonic
4
carbonic anhydrase
4
anhydrase inhibitors
4
inhibitors carbonic
4
carbonic anhydrases
4
anhydrases cas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!