Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both and appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins' ability to possess hemolytic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025637 | PMC |
http://dx.doi.org/10.3390/md16060183 | DOI Listing |
Sci Prog
January 2025
Oncology Department, Affiliated Wuxi Fifth People's Hospital of Jiangnan University, Wuxi, Jiangsu, PR China.
Cell division cycle-associated (CDCA) genes are dysregulated in carcinomas. Our study aims to identify similarities and differences of the clinical roles of CDCAs in breast cancer (BRCA) and to explore their potential mechanisms. In GEPIA, compared to normal tissues, expressions of CDCAs were higher in BRCA and sub-types.
View Article and Find Full Text PDFGenome Biol
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
Background: Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives.
Results: We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies.
Microb Cell Fact
January 2025
Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!