Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy.

Nanotechnology

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, People's Republic of China. Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, People's Republic of China.

Published: August 2018

Cancer has become the most prevalent cause of deaths, placing a huge economic and healthcare burden worldwide. Nanoparticles (NPs), as a key component of nanomedicine, provide alternative options for promoting the efficacy of cancer therapy. Current conventional cancer models have limitations in predicting the effects of various cancer treatments. To overcome these limitations, biomimetic and novel 'tumor-on-a-chip' platforms have emerged with other innovative biomedical engineering methods that enable the evaluation of NP-based cancer therapy. In this review, we first describe cancer models for evaluation of NP-based cancer therapy techniques, and then present the latest advances in 'tumor-on-a-chip' platforms that can potentially facilitate clinical translation of NP-based cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aac7a4DOI Listing

Publication Analysis

Top Keywords

cancer therapy
16
np-based cancer
12
cancer
9
cancer models
8
'tumor-on-a-chip' platforms
8
evaluation np-based
8
tumor-on-a-chip platforms
4
platforms assessing
4
assessing nanoparticle-based
4
nanoparticle-based cancer
4

Similar Publications

The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!