A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.

Bioinspir Biomim

Department of Mechanical Engineering, Virginia Tech, 1075 Life Science Circle, Blacksburg, VA, 24061, United States of America.

Published: June 2018

The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animals biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to study the dynamic sensing principles horseshoe bats employ. Consequently, two robotic devices were developed to mimic the dynamic emission and reception characteristics of horseshoe bats. The noseleaf and pinnae shapes were modeled as smooth blanks matched to digital representations of a horseshoe bat specimens noseleaf and pinnae. Local shape features mimicking structures on the pinnae and noseleaf were added digitally. Flexible baffles with local shape feature combinations were manufactured and paired with actuation mechanisms to mimic pinnae and noseleaf deformations in vivo. Two noseleaves with and without local shape features were considered. Each noseleaf baffle was mounted to a platform called the dynamic emission head to actuate three surface elements of the baffle. Similarly, 12 pinna realizations composed of combinations of three local shape features were mounted to a platform called the dynamic reception head to deform the left and right pinnae independently. Motion of the noseleaf and pinnae were synchronized to the incoming and outgoing sonar waveform, and the joint time-frequency properties of the noseleaf and pinnae local feature combinations and pairs of pinnae and noseleaf thereof were characterized across spatial direction. Amplitude modulations to the outgoing and incoming sonar pulse information across spatial direction were observed for all pinnae and noseleaf local shape feature combinations. Peak modulation variance generated by motion of the pinnae and combinations of the noseleaf and pinnae approached a white Gaussian noise variance bound. It was found the dynamic emitter generated less modulation than either the combined or reception scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/aac788DOI Listing

Publication Analysis

Top Keywords

noseleaf pinnae
24
local shape
20
horseshoe bats
16
pinnae noseleaf
16
pinnae
12
shape features
12
feature combinations
12
noseleaf
11
bats noseleaf
8
horseshoe bat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!