Active matrix metalloproteases (MMPs) play a significant role in the pathogenesis of many diseases including osteoarthritis (OA), which involves progressive proteolytic degradation of cartilage. Clinical success of OA interventions that target MMPs has been limited by a lack of information about the presence and activity of specific disease-related proteases. We therefore developed a chemoproteomics approach based on MS to characterize the release and activity of MMPs in an model of the early inflammatory phase of posttraumatic OA (PTOA). We designed and synthesized chemical activity-based probes (ABPs) to identify active MMPs in bovine cartilage explants cultured for 30 days with the proinflammatory cytokine, interleukin-1α. Using these probes in an activity-based protein profiling-multidimensional identification technology (ABPP-MudPIT) approach, we identified active MMP-1, -2, -3, -7, -9, -12, and -13 in the medium after 10 days of culture, the time at which irreversible proteolysis of the collagen network in the explant was detected using proteolytic activation of FRET-quenched MMP substrates. Total MMP levels were quantified by shotgun proteomics, which, taken with ABPP-MudPIT data, indicated the presence of predominantly inactive MMPs in the culture medium. The selectivity of the ABPP-MudPIT approach was further validated by detection of specific endogenous MMPs activated with 4-aminophenylmurcuric acetate. The utility of the new ABPP-MudPIT approach for detecting molecular biomarkers of PTOA disease initiation and potential targets for therapeutics motivates possible application in other diseases involving MMP activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065175 | PMC |
http://dx.doi.org/10.1074/jbc.M117.818542 | DOI Listing |
J Biol Chem
July 2018
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Electronic address:
Active matrix metalloproteases (MMPs) play a significant role in the pathogenesis of many diseases including osteoarthritis (OA), which involves progressive proteolytic degradation of cartilage. Clinical success of OA interventions that target MMPs has been limited by a lack of information about the presence and activity of specific disease-related proteases. We therefore developed a chemoproteomics approach based on MS to characterize the release and activity of MMPs in an model of the early inflammatory phase of posttraumatic OA (PTOA).
View Article and Find Full Text PDFNat Methods
September 2005
The Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA.
Achieving information content of satisfactory breadth and depth remains a formidable challenge for proteomics. This problem is particularly relevant to the study of primary human specimens, such as tumor biopsies, which are heterogeneous and of finite quantity. Here we present a functional proteomics strategy that unites the activity-based protein profiling and multidimensional protein identification technologies (ABPP-MudPIT) for the streamlined analysis of human samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!