The reticular formation is important in primate motor control, both in health and during recovery after brain damage. Little is known about the different neurons present in the reticular nuclei. Here we recorded extracellular spikes from the reticular formation in five healthy female awake behaving monkeys (193 cells), and in two female monkeys 1 year after recovery from a unilateral pyramidal tract lesion (125 cells). Analysis of spike shape and four measures derived from the interspike interval distribution identified four clusters of neurons in control animals. Cluster 1 cells had a slow firing rate. Cluster 2 cells had narrow spikes and irregular firing, which often included high-frequency bursts. Cluster 3 cells were highly rhythmic and fast firing. Cluster 4 cells showed negative spikes. A separate population of 42 cells was antidromically identified as reticulospinal neurons in five anesthetized female monkeys. The distribution of spike width in these cells closely overlaid the distribution for cluster 2, leading us tentatively to suggest that cluster 2 included neurons with reticulospinal projections. In animals after corticospinal lesion, cells could be identified in all four clusters. The firing rate of cells in clusters 1 and 2 was increased in lesioned animals relative to control animals (by 52% and 60%, respectively); cells in cluster 2 were also more regular and more bursting in the lesioned animals. We suggest that changes in both membrane properties and local circuits within the reticular formation occur following lesioning, potentially increasing reticulospinal output to help compensate for lost corticospinal descending drive. This work is the first to subclassify neurons in the reticular formation, providing insights into the local circuitry of this important but little understood structure. The approach developed can be applied to any extracellular recording from this region, allowing future studies to place their data within our current framework of four neural types. Changes in reticular neurons may be important to subserve functional recovery after damage in human patients, such as after stroke or spinal cord injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031583PMC
http://dx.doi.org/10.1523/JNEUROSCI.3371-17.2018DOI Listing

Publication Analysis

Top Keywords

reticular formation
20
cluster cells
16
cells
11
pyramidal tract
8
tract lesion
8
neurons reticular
8
female monkeys
8
identified clusters
8
control animals
8
firing rate
8

Similar Publications

Crystallinity, stability, and complexity are significant factors to consider in the design and development of covalent organic frameworks (COFs). Among various building blocks used, 1,3,5-triformylphloroglucinol (Tp) is notable for enhancing both crystallinity and structural stability in COFs. Tp facilitates the formation of β-ketoenamine-linked COFs through keto-enol tautomerism when reacted with aromatic amines.

View Article and Find Full Text PDF

Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization.

View Article and Find Full Text PDF

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability.

View Article and Find Full Text PDF

Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!