Box jellyfish and vertebrates are separated by >500 million years of evolution yet have structurally analogous lens eyes that employ rhodopsin photopigments for vision. All opsins possess a negatively charged residue-the counterion-to maintain visible-light sensitivity and facilitate photoisomerization of their retinaldehyde chromophore. In vertebrate rhodopsins, the molecular evolution of the counterion position-from a highly conserved distal location in the second extracellular loop (E181) to a proximal location in the third transmembrane helix (E113)-is established as a key driver of higher fidelity photoreception. Here, we use computational biology and heterologous action spectroscopy to determine whether the appearance of the advanced visual apparatus in box jellyfish was also accompanied by changes in the opsin tertiary structure. We found that the counterion in an opsin from the lens eye of the box jellyfish (JellyOp) has also moved to a unique proximal location within the transmembrane bundle-E94 in TM2. Furthermore, we reveal that this Schiff base/counterion system includes an additional positive charge-R186-that has coevolved with E94 to functionally separate E94 and E181 in the chromophore-binding pocket of JellyOp. By engineering this pocket-neutralizing R186 and E94, or swapping E94 with the vertebrate counterion E113-we can recreate versions of the invertebrate and vertebrate counterion systems, respectively, supporting a relatively similar overall architecture in this region of animal opsins. In summary, our data establish the third only counterion site in animal opsins and reveal convergent evolution of tertiary structure in opsins from distantly related species with advanced visual systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004467 | PMC |
http://dx.doi.org/10.1073/pnas.1721333115 | DOI Listing |
Sci Rep
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, 21944, Taif, Saudi Arabia.
This study investigates the use of machine learning models to predict solubility of rivaroxaban in binary solvents based on temperature (T), mass fraction (w), and solvent type. Using a dataset with over 250 data points and including solvents encoded with one-hot encoding, four models were compared: Gradient Boosting (GB), Light Gradient Boosting (LGB), Extra Trees (ET), and Random Forest (RF). The Jellyfish Optimizer (JO) algorithm was applied to tune hyperparameters, enhancing model performance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of EEE, JCT College of Engineering and Technology, Coimbatore, Tamil Nadu, 641105, India.
This manuscript proposes the Jellyfish Search Optimization (JSO) algorithm-based Fractional Order Proportional-Integral-Derivative (FOPID) controller tuning for a paper machine headbox. The novelty of this method lies in integrating the JSO technique for optimizing the parameters of the FOPID controller to monitor and control headbox pressure and stock level efficiently and effectively. The JSO algorithm ensures optimal tuning of controller parameters by minimizing error indices such as Integral of Squared Error (ISE), Integral of Time Absolute Error (ITAE), and Integral of Absolute Error (IAE).
View Article and Find Full Text PDFInt Marit Health
January 2025
Department of Epidemiology and Tropical Medicine; Military Institute of Medicine - National Research Institute, Warsaw, Poland.
Adv Mar Biol
November 2024
Ocean Museum Germany, Stralsund, Germany.
Max Egon Thiel worked as curator of the aquatic invertebrates collection at the Zoological Museum in Hamburg until 1963. Specialising in marine planktonic megafauna, he compiled a broad review of the research history on the Scyphozoa (Coronatae, Cubomedusae, Semaeostomeae) including the Staurozoa (as Stauromedusae), written in German. After publishing major parts in 1936 and 1938, World War II delayed further chapters until 1959 and 1962.
View Article and Find Full Text PDFGlycobiology
January 2025
Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan.
The O-glycan composition of jellyfish (JF) mucin (qniumucin: Q-mucin) extracted from three Cubozoan species was studied after the optimization of the purification protocol. Application of a stepwise gradient of ionic strength to anion exchange chromatography (AEXC) was effective for isolating Q-mucin from coexisting impurities. In the three species, the amino acid sequence of the tandem repeat (TR) region in Q-mucin in all three Cubozoans seemed to remain the same as that in all Scyphozoans, although their glycan chains seemed to exhibit clear diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!