Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury.

Br J Anaesth

Institut National de la Santé et de la Recherche Médicale, Grenoble, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; Pôle Anesthésie Réanimation, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France. Electronic address:

Published: June 2018

Background: The mechanisms by which hypertonic sodium lactate (HSL) solution act in injured brain are unclear. We investigated the effects of HSL on brain metabolism, oxygenation, and perfusion in a rodent model of diffuse traumatic brain injury (TBI).

Methods: Thirty minutes after trauma, anaesthetised adult rats were randomly assigned to receive a 3 h infusion of either a saline solution (TBI-saline group) or HSL (TBI-HSL group). The sham-saline and sham-HSL groups received no insult. Three series of experiments were conducted up to 4 h after TBI (or equivalent) to investigate: 1) brain oedema using diffusion-weighted magnetic resonance imaging and brain metabolism using localized H-magnetic resonance spectroscopy (n = 10 rats per group). The respiratory control ratio was then determined using oxygraphic analysis of extracted mitochondria, 2) brain oxygenation and perfusion using quantitative blood-oxygenation-level-dependent magnetic resonance approach (n = 10 rats per group), and 3) mitochondrial ultrastructural changes (n = 1 rat per group).

Results: Compared with the TBI-saline group, the TBI-HSL and the sham-operated groups had reduced brain oedema. Concomitantly, the TBI-HSL group had lower intracellular lactate/creatine ratio [0.049 (0.047-0.098) vs 0.097 (0.079-0.157); P < 0.05], higher mitochondrial respiratory control ratio, higher tissue oxygen saturation [77% (71-79) vs 66% (55-73); P < 0.05], and reduced mitochondrial cristae thickness in astrocytes [27.5 (22.5-38.4) nm vs 38.4 (31.0-47.5) nm; P < 0.01] compared with the TBI-saline group. Serum sodium and lactate concentrations and serum osmolality were higher in the TBI-HSL than in the TBI-saline group.

Conclusions: These findings indicate that the hypertonic sodium lactate solution can reverse brain oxygenation and metabolism dysfunction after traumatic brain injury through vasodilatory, mitochondrial, and anti-oedema effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bja.2018.01.025DOI Listing

Publication Analysis

Top Keywords

brain
9
hypertonic sodium
8
sodium lactate
8
brain oxygenation
8
traumatic brain
8
brain injury
8
brain metabolism
8
oxygenation perfusion
8
tbi-saline group
8
tbi-hsl group
8

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Background & Aims: Hepatic encephalopathy (HE), one of the most serious prognostic factors for mortality in alcohol-related cirrhosis (ALD cirrhosis), is not recorded in Danish healthcare registries. However, treatment of HE with lactulose, the universal first-line treatment, can be identified through data on filled prescriptions. This study aimed to investigate if lactulose can be used as a surrogate marker of HE.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!