A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

4-Hydroxy-2-pyridone Derivatives and the δ-pyrone Isostere as Novel Agents Against Mycobacterium smegmatis Biofilm Inhibitors. | LitMetric

AI Article Synopsis

  • Bacterial infections in biofilms are harder to treat because bacteria behave differently in these structures, making traditional antibacterial drugs less effective.
  • New drugs are needed, and this research focuses on creating novel derivatives of 4-hydroxy-2-pyridone to combat mycobacterial infections and biofilm formation.
  • Four promising compounds were identified that effectively inhibit the growth and biofilm formation of Mycobacterium smegmatis, showing potential as effective oral antimycobacterial agents with good drug-like properties.

Article Abstract

Background: The treatment of a bacterial infection when the bacterium is growing in a biofilm is a vexed issue. This is because the bacteria in a biofilm behaves differently compared to the individual planktonic free-form. As a result, traditional antibacterial agents lose their activity.

Objective: Presently, there are not many drugs that are effective against bacteria growing in biofilms. Based on literature reports, we have sought to develop novel derivatives of 4-hydroxy-2- pyridone as both antimycobacterial and antibiofilm agents.

Methods: The pyridone derivatives were synthesized by reacting 4-hydroxy-6-methyl-2H-pyran-2- one with appropriate amines and followed by reaction with substituted phenyl isocyanates as reported in the literature.

Results: Four compounds in this series significantly inhibit the growth and formation of biofilm by Mycobacterium smegmatis (mc2 155 strain) at 50 µg/ml. Further, in silico evaluation of the ADME parameters shows that these compounds possess good drug-like properties and have the potential to be developed both as antibiofilm and as oral antimycobacterial agents.

Conclusion: This finding is of significance as presently very few small molecules are known to inhibit biofilm formation in mycobacteria. These compounds are unique in the sense that they are more potent against Mycobacterium smegmatis in the biofilm state compared to the planktonic form.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406414666180525075755DOI Listing

Publication Analysis

Top Keywords

mycobacterium smegmatis
12
smegmatis biofilm
8
biofilm
6
4-hydroxy-2-pyridone derivatives
4
derivatives δ-pyrone
4
δ-pyrone isostere
4
isostere novel
4
novel agents
4
agents mycobacterium
4
biofilm inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!