Fluoxetine is a selective serotonin reuptake inhibitor used as an antidepressant and has been frequently detected in aquatic environments. However, its effects in fish from Asia remain relatively less studied. In this study, the topmouth gudgeon Pseudorasbora parva was exposed to 0, 50, and 200 µg/L of fluoxetine for 4 h and 42 d. The effects of fluoxetine on biometrics were compared to biochemical endpoints indicative of stress in different fish tissues (brain, liver, gills and intestine) following exposures. In fish exposed for 42 d, lipid peroxidation endpoints were enhanced 80% in the liver and gills. Acetylcholinesterase (AChE) activity was increased 40% after exposure to 50 µg/L and 55% at 200 µg/L following 4 h exposure. In contrast AChE was increased 26% (at 50 µg/L) after 42 d of exposures. Enhanced ethoxyresorufin-O-deethylase activity (EROD) was detected only in fish exposed to 50 µg/L of fluoxetine for 4 h. The activity of α-glucosidase (α-Glu) was also induced (at 200 µg/L) after 4 h of exposure. After 4 h of exposure, the activities of proteases in the intestine were generally inhibited at 200 µg/L. Both 4 h and 42 d exposures resulted in an increased hepatosomatic index (HSI) but did not affect the condition factor (CF). Our results demonstrate that fluoxetine significantly altered biochemical endpoints in P. parva after acute exposure and the morphological changes in liver size were not observed until 42 d of exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.04.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!