Effects of Mg on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site.

Neuropharmacology

Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA. Electronic address:

Published: July 2018

Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg also binds. Under physiological conditions, Mg increases the ICs of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050087PMC
http://dx.doi.org/10.1016/j.neuropharm.2018.05.017DOI Listing

Publication Analysis

Top Keywords

second site
24
memantine ketamine
20
deep site
16
memantine
13
inhibition memantine
12
site memantine
12
site
11
memantine inhibit
8
associating second
8
recovery inhibition
8

Similar Publications

We report a case of a patient with dilated cardiomyopathy who experienced recurrent ventricular tachycardia (VT) and multiple defibrillations following CRT-D implantation. Due to worsening cardiac function, the patient required surgical implantation of a left ventricular assist device (LVAD) as a bridge to heart transplantation. During the procedure, we used the Ensite three-dimensional mapping system to perform activation and substrate mapping of the VT targets, followed by endocardial and epicardial cryoballoon ablation of clinical VT.

View Article and Find Full Text PDF

Introduction: Clinical trials are critical for drug development and patient care; however, they often need more efficient trial design and patient enrolment processes. This research explores integrating machine learning (ML) techniques to address these challenges. Specifically, the study investigates ML models for two critical aspects: (1) streamlining clinical trial design parameters (like the site of drug action, type of Interventional/Observational model, etc) and (2) optimizing patient/volunteer enrolment for trials through efficient classification techniques.

View Article and Find Full Text PDF

Tumor Treating Fields (TTFields) has emerged as a significant adjunctive component in the treatment of high-grade gliomas following the EF-14 trial in 2017. The incorporation of TTFields, alongside cyclic temozolomide therapy, has demonstrated improved patient outcomes when the usage exceeds 18 h per day (75% usage). analysis of the EF-14 trial has demonstrated that therapy usage exceeding 90% is associated with an additional benefit, while rates above 50% have also proven effective in literature.

View Article and Find Full Text PDF

Background: Rosai-Dorfman disease (RDD), also known as sinus histiocytosis with massive lymphadenopathy, is a rare non-malignant disorder characterized by excessive proliferation of histiocytes, the cause of which remains unknown. Although the lymph nodes are the most commonly affected site, some patients may present with extranodal involvement, particularly in the skin, nasal cavity, eyes, and bones. In this report, we aim to present a unique case of RDD with pleural involvement in a 61-year-old patient.

View Article and Find Full Text PDF

Deciphering the complex molecular architecture of the genetically modified soybean FG72 through paired-end whole genome sequencing.

Food Chem (Oxf)

June 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.

The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!