Surgical resection of the esophagus requires sacrificing a long portion of it. Its replacement by the demanding gastric pull-up or colonic interposition techniques may be avoided by using short biologic scaffolds composed of decellularized matrix (DM). The aim of this study was to prepare, characterize, and assess the in vivo remodeling of DM and its clinical impact in a preclinical model. A dynamic chemical and enzymatic decellularization protocol of porcine esophagus was set up and optimized. The resulting DM was mechanically and biologically characterized by DNA quantification, histology, and histomorphometry techniques. Then, in vitro and in vivo tests were performed, such as DM recellularization with human or porcine adipose-derived stem cells, or porcine stromal vascular fraction, and maturation in rat omentum. Finally, the DM, matured or not, was implanted as a 5-cm-long esophagus substitute in an esophagectomized pig model. The developed protocol for esophageal DM fulfilled previously established criteria of decellularization and resulted in a scaffold that maintained important biologic components and an ultrastructure consistent with a basement membrane complex. In vivo implantation was compatible with life without major clinical complications. The DM's scaffold in vitro characteristics and in vivo implantation showed a pattern of constructive remodeling mimicking major native esophageal characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2018.05.023DOI Listing

Publication Analysis

Top Keywords

pig model
8
in vivo implantation
8
decellularized matured
4
matured esophageal
4
esophageal scaffold
4
scaffold circumferential
4
esophagus
4
circumferential esophagus
4
esophagus replacement
4
replacement proof
4

Similar Publications

The utilization of manure resources is an important measure to promote the development of agricultural green low-carbon cycle and solve the challenges associated with the current large-scale development of the livestock and poultry breeding industry. Based on the survey data of pig farmers in Qingdao, Shandong Province, China, this paper constructs a theoretical analysis framework of pig breeding scale and technical cognition on the utilization behavior of livestock and poultry manure resources of pig farmers. The binary Logit model and the moderating effect model are used to deeply explore the scale effect of breeding scale on the utilization behavior of pig farmers' manure resources, and the moderating effect of technical cognition on the influence of breeding scale on the utilization behavior of manure resources.

View Article and Find Full Text PDF

Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Article Synopsis
  • Traumatic brain injury (TBI) is a leading cause of death, complicating the development of effective therapies due to the unique nature of each injury.
  • Clinical questions regarding the benefits of measuring intracranial pressure, cerebral perfusion pressure, and surgical interventions remain largely unanswered.
  • This study focused on acute subdural hematoma in a porcine model to better understand secondary brain injury and the effects of different injury patterns on outcomes, highlighting the need for comprehensive models to improve TBI treatment translation.
View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!