Cystine/glutamate transporter, system x, is involved in nitric oxide production in mouse peritoneal macrophages.

Nitric Oxide

Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, 746-2 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan. Electronic address:

Published: August 2018

The amino acid transport system x is important for maintaining intracellular glutathione levels and extracellular redox balance. The main component of system x, xCT, is strongly induced by various stimuli, including oxidative stress and bacterial lipopolysaccharides (LPS) in macrophages. In the present study, we investigated the production of nitric oxide by LPS-stimulated mouse peritoneal macrophages isolated from both xCT-deficient and wild-type mice. After culturing macrophages in the presence of LPS for 24-48 h, nitrite levels in the medium of xCT-deficient macrophages were significantly decreased compared to that of wild-type cells. However, the transport activity of arginine, a precursor of nitric oxide, and the expression of nitric oxide synthase 2 in xCT-deficient macrophages were similar to those of wild-type cells. When wild-type macrophages were cultured in the medium that contained no cystine, nitric oxide production was decreased to the level similar to that of the xCT-deficient macrophages. When xCT-deficient macrophages were cultured with 2-mercaptoethanol, intracellular cysteine levels were increased and nitrite accumulation in the medium was significantly increased. On the other hand, when these cells were cultured with buthionine sulfoximine, an inhibitor of glutathione synthesis, nitrite accumulation in the medium was essentially unchanged, although intracellular glutathione levels were very low. Reactive oxygen species levels in xCT-deficient macrophages were higher than those of wild-type cells, and treatment with LPS caused an increase in oxidative stress in both cells. These results suggest that intracellular cysteine supplied by xCT contributes to nitric oxide production and the reduction of oxidative stress in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2018.05.005DOI Listing

Publication Analysis

Top Keywords

nitric oxide
24
xct-deficient macrophages
20
oxide production
12
oxidative stress
12
wild-type cells
12
macrophages
11
mouse peritoneal
8
peritoneal macrophages
8
intracellular glutathione
8
glutathione levels
8

Similar Publications

Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.

View Article and Find Full Text PDF

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.

Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!