Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2018.05.017 | DOI Listing |
Integr Zool
January 2025
Department of Entomology, University of Georgia, Tifton, Georgia, USA.
Selection on body size tends to favor larger males that outcompete smaller males to mate with females, and larger, more fecund females. For many web-building spiders in the Nephilidae family, reproductive success increases with body size, which in turn, is related to diet. The diet of female spiders may overlap with males who share her web, but diet patterns could depend on size if certain males have better access to prey ensnared in the web.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.
Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!