Purpose: We sought to develop and validate automated performance metrics to measure surgeon performance of vesicourethral anastomosis during robotic assisted radical prostatectomy. Furthermore, we sought to methodically develop a standardized training tutorial for robotic vesicourethral anastomosis.
Materials And Methods: We captured automated performance metrics for motion tracking and system events data, and synchronized surgical video during robotic assisted radical prostatectomy. Nonautomated performance metrics were manually annotated by video review. Automated and nonautomated performance metrics were compared between experts with 100 or more console cases and novices with fewer than 100 cases. Needle driving gestures were classified and compared. We then applied task deconstruction, cognitive task analysis and Delphi methodology to develop a standardized robotic vesicourethral anastomosis tutorial.
Results: We analyzed 70 vesicourethral anastomoses with a total of 1,745 stitches. For automated performance metrics experts outperformed novices in completion time (p <0.01), EndoWrist® articulation (p <0.03), instrument movement efficiency (p <0.02) and camera manipulation (p <0.01). For nonautomated performance metrics experts had more optimal needle to needle driver positioning, fewer needle driving attempts, a more optimal needle entry angle and less tissue trauma (each p <0.01). We identified 14 common robotic needle driving gestures. Random gestures were associated with lower efficiency (p <0.01), more attempts (p <0.04) and more trauma (p <0.01). The finalized tutorial contained 66 statements and figures. Consensus among 8 expert surgeons was achieved after 2 rounds, including among 58 (88%) after round 1 and 8 (12%) after round 2.
Conclusions: Automated performance metrics can distinguish surgeon expertise during vesicourethral anastomosis. The expert vesicourethral anastomosis technique was associated with more efficient movement and less tissue trauma. Standardizing robotic vesicourethral anastomosis and using a methodically developed tutorial may help improve robotic surgical training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.juro.2018.05.080 | DOI Listing |
Commun Biol
January 2025
Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ghana, P.O. Box 134, Legon-Accra, Ghana.
Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Electronics and Communication Engineering Dept. Faculty of Engineering, Horus University, New Damietta, Egypt.
Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.
View Article and Find Full Text PDFNat Commun
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Spatial protein expression technologies can map cellular content and organization by simultaneously quantifying the expression of >40 proteins at subcellular resolution within intact tissue sections and cell lines. However, necessary image segmentation to single cells is challenging and error prone, easily confounding the interpretation of cellular phenotypes and cell clusters. To address these limitations, we present STARLING, a probabilistic machine learning model designed to quantify cell populations from spatial protein expression data while accounting for segmentation errors.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Division of Orthopaedic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada.
Background: To summarize the statistical performance of machine learning in predicting revision, secondary knee injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview of the statistical performance of these models.
Methods: Three online databases (PubMed, MEDLINE, EMBASE) were searched from database inception to February 6, 2024, to identify literature on the use of machine learning to predict revision, secondary knee injury (e.g.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!