Aim: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.
Materials And Methods: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.
Key Findings: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.
Significance: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2018.05.035 | DOI Listing |
Biomolecules
December 2024
School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in () and . In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570.
It is believed that inflammation influences several physiological processes, including the function of the central nervous system. Moreover, the impairment of lipid mechanisms/pathways is associated with neurodegenerative disorders and onset of Alzheimer's disease (AD). AD is a chronic neurodegenerative disease representing the major cause of dementia worldwide.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
Neurodegenerative diseases are primarily characterized by the selective loss of neurons in the brain, leading to a significant and widespread global public health burden. Although numerous mechanisms underlying neurodegenerative diseases have been elucidated, effective therapeutic strategies are still being explored. Several drugs have been proposed to halt disease progression; however, they often come with severe side effects.
View Article and Find Full Text PDFMolecules
November 2024
Department of Korean Medicine, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea.
Hedl. is a traditional medicinal plant in Korea, China, and Japan with known antioxidative, anti-inflammatory, anti-atherogenic, and anti-melanin activities. However, its anti-neuroinflammatory effects remain largely unknown.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan.
The plant Cissus tuberosa Moc is abundant in phenolics, has been documented to have neuroprotective properties. The study seeks to determine the neuroprotective effects of C. tuberosa ethanolic extract (CTE) against Parkinson's disease by evaluating its impact on motor dysfunction, cognitive deficits, neuroinflammation, and neurodegeneration in paraquat-induced Parkinson's disease models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!