Human infections by type B influenza virus constitute about 25% of all influenza cases. The viral hemagglutinin is comprised of two subunits, HA1 and HA2. While HA1 is constantly evolving in an unpredictable fashion, the HA2 subunit is highly conserved, making it a potential candidate for a universal vaccine. However, immunodominant epitopes in the HA2 subunit remain largely unknown. To delineate MHC Class I epitopes, we first identified 9-mer H-2K-restricted CD8 T cell epitopes in the HA2 domain by in silico analyses, followed by evaluating the immunodominance of these peptides in mice challenged with the virus. Of three peptides selected through in silico analysis, the universally conserved peptide, YYSTAASSL (B/HA2-190), possessed the highest predicted binding affinity to MHC Class I and was most effective in inducing IL-2 and TNF-α in mouse splenocytes. Importantly, the peptide demonstrated best capability of stimulating peptide-specific ex-vivo cytotoxicity against target cells. Taken together, this finding would be of value for assessment of cell-mediated immune responses elicited by vaccines based on the highly conserved HA2 stalk domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.05.148 | DOI Listing |
Biophys J
January 2025
Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:
Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.
View Article and Find Full Text PDFViruses
December 2024
Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America.
One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously.
View Article and Find Full Text PDFCytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address:
Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!